New approach to elaborate exfoliated starch-based nanobiocomposites.

نویسندگان

  • Frédéric Chivrac
  • Eric Pollet
  • Marc Schmutz
  • Luc Avérous
چکیده

The present paper reports the successful elaboration of exfoliated plasticized starch-based nanobiocomposites. This was made possible by using cationic starch as a new clay organomodifier to better match the polarity of the matrix and thus to facilitate the clay exfoliation process. To demonstrate the efficiency of this new approach, either natural (MMT-Na) or organomodified (OMMT-CS) montmorillonite were incorporated into the starch nanobiocomposites by a melt blending process. The morphological analyses (SAXD and TEM) showed that MMT-Na leads to the formation of intercalated nanobiocomposites. On the contrary, OMMT-CS allowed the elaboration of well-exfoliated nanobiocomposites. Tensile tests performed on the obtained nanobiocomposites showed that exfoliated nanobiocomposites display enhanced mechanical properties compared to those of the intercalated nanobiocomposites and neat matrix. These results clearly highlight the great interest in using OMMT-CS to obtain starch-based nanobiocomposites with improved properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEW APPROACH TO PLASTIC DESIGN AND OPTIMIZATION OF PARALELL CHORD VIERENDEEL GIRDERS

This study was prompted by the need to elaborate on recent developments in plastic design of, parallel chord Vierendeel girders (VG). The paper proposes exact, general solutions to two novel classes of VG under practical loading conditions, a-VG of uniform section, where the chords and the verticals may be composed of two different prismatic sections, and b-VG of uniform strength, where the con...

متن کامل

Micronucleus Assay in Exfoliated Buccal Epithelial Cells Using Liquid Based Cytology Preparations in Building Construction Workers

Background and objective:Cytogenetic damage in exfoliated buccal epithelial cells due to environmental and occupational exposure is often monitored by micronucleus (MN) assay using liquid based cytology (LBC) preparations. This study was performed to evaluate MN in exfoliated buccal epithelial cells of building construction workers using LBC preparations. <strong...

متن کامل

Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles

Objective(s): Biodegradable film is widely used because it is free from synthetic substances and does not lead to environment pollution. This study aimed to prepare and characterize biodegradable sago starch films loaded with Carboxymethyl Cellulose nanoparticles. Methods: Sago starch films were prepared and plasticized with sorbitol/ glycerol by t...

متن کامل

Characterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging.

Antioxidant nanobiocomposites based on poly(ε-caprolactone) (PCL) were prepared by incorporating hydroxytyrosol (HT) and a commercial montmorillonite, Cloisite30B (C30B), at different concentrations. A full structural, thermal, mechanical, and functional characterization of the developed nanobiocomposites was carried out. The presence of the nanoclay and HT increased PCL crystallinity, whereas ...

متن کامل

Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst.

The layered transition-metal oxide HNbMoO(6) is demonstrated to exhibit remarkable catalytic performance for the hydrolysis of saccharides such as sucrose, cellobiose, starch, and cellulose, attributable to water tolerance and the facile accessibility of saccharides into the strong acidic interlayer gallery of the solid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2008